Sites for Dynamic Protein-Carbohydrate Interactions of O- and C-Linked Mannosides on the E. coli FimH Adhesin.
نویسندگان
چکیده
Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.
منابع مشابه
Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections
Gram-negative uropathogenic Escherichia coli (UPEC) bacteria are a causative pathogen of urinary tract infections (UTIs). Previously developed antivirulence inhibitors of the type 1 pilus adhesin, FimH, demonstrated oral activity in animal models of UTI but were found to have limited compound exposure due to the metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose ...
متن کاملReceptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin.
Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first t...
متن کاملHeterobinary adhesins based on the Escherichia coli FimH fimbrial protein.
The FimH adhesin of Escherichia coli type 1 fimbriae confers the ability to bind to D-mannosides by virtue of a receptor-binding domain located in its N-terminal region. This protein was engineered into a heterobifunctional adhesin by introducing a secondary binding site in the C-terminal region. The insertion of histidine clusters into this site resulted in coordination of various metal ions b...
متن کاملEn route to photoaffinity labeling of the bacterial lectin FimH
Mannose-specific adhesion of Escherichia coli bacteria to cell surfaces, the cause of various infections, is mediated by a fimbrial lectin, called FimH. X-ray studies have revealed a carbohydrate recognition domain (CRD) on FimH that can complex α-D-mannosides. However, as the precise nature of the ligand-receptor interactions in mannose-specific adhesion is not yet fully understood, it is of i...
متن کاملComparison of Inhibitory Activities of meta and para Substituted N-aryl 3-Hydroxypyridin-4-one Mannosides Towards Type 1 Fimbriated E. coli
In uropathogenic Escherichia coli, mannose-specific adhesion is mediated by the FimH adhesin located at the tip of type 1 fimbriae. Novel mannosylated N-aryl substituted 3-hydroxypyridin-4ones with meta substituents on the aryl part of the molecule were prepared, and their inhibitory properties towards the adhesion of E. coli to guinea pig erythrocytes explored using the hemagglutination assay....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2017